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A low-cost machine learning process for gait measurement using biomechanical sensors  
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A B S T R A C T   

Continuous gait measurement can bring relevant indicators for healthcare professionals. Several techniques were 
developed for this cause. However, the beneficiaries, especially senior adults, find it hard to accept a monitoring 
device as it takes away their privacy. In this paper, we present a non-intrusive, low-cost and easy to implement 
model for gait measurement at home. It consists of implementing 4 passive infrared (PIR) sensors facing each 
other by pair. Our approach is based on a Deep Learning (DL) model that takes as input the signals generated by 
the PIR sensors, as they are representative of the distance and the speed of the moving object. A temporary Depth 
camera is used for training the model on the gait parameters. To evaluate our approach, we conducted multiple 
series of experiments on real sensor data. The results are promising and show that our approach is efficient for 
continuous gait measurement.   

1. Introduction 

Gait impairment in elderly people is a major issue that widen the gap 
between overall life expectancy and disability-free life expectancy. 
Several studies [1–5] have suggested that continuous gait analysis pro
vides a relevant predictor for the quality of life, cognitive disorders, fall 
risk, among other “good health” indicators. 

For such individuals, gait assessment is usually performed in clinical 
settings characterized by intermittent observations, with the assistance 
of a healthcare professional and under specific task-oriented conditions 
[6]. This might introduce a bias because the observations are completely 
uncorrelated with the familiar environment or because the subject is 
often stressed out by the test or uses compensation strategies. 

Thus, in-home measurement can provide meaningful information for 
the practitioner to analyze the patient’s condition. But also, to be alerted 
of a favorable evolution in order to evaluate the relevance of the treat
ment (e.g., balance workshops), or unfavorable (e.g., the need of addi
tional treatments). Current gold-standards systems for motion capture, 
using cameras and infrared markers placed on bony landmarks [7] (e.g., 
Vicon, CODA motion) are often expensive, labor intensive and 
time-consuming to setup. Besides, obstruction of the field of views or 
lighting confounds issues are limiting factors that make such solutions 
impracticable for clinical use. Markerless gait measurement [8,9] can be 
done with RGB cameras and Depth sensors. Yet, these solutions are 
found to be intrusive by the beneficiaries. Body-worn devices [10] (e.g., 
Inertial Measurement Units (IMU) based systems within smartwatches) 
are often perceived as stigmatizing by the senior users or have low 
acceptability ratings. There are also solutions implemented on or under 
the floor [11]. But these, although promising and accurate, require the 
renovation of the home and are quite expensive. 

Within the context of aging at home, the setup must be 1) simple, not 
requiring the intervention of a skilled person, 2) low-cost for a wide 
deployment, 3) accurate enough so that the interpretation of the 

measurements is possible and sufficiently relevant, 4) non-intrusive and 
non-stigmatizing. Points 2 and 3 are often in conflict. However, it can be 
assumed that for an analyst, greater imprecision can be largely 
compensated by continuous home measurement. 

In view of the constraints listed above, we sought for a non-wearable 
sensor, off the shelf and inexpensive, which can be placed anywhere in 
the home. Systems based on passive infrared sensors (PIR) attracted 
much attention due to their advantages of low power consumption, low 
cost and privacy protection. Our approach aims to use such sensors to 
evaluate the gait in an indoor environment. It is based on the signals 
generated by these sensors since they provide significant information on 
the detected object. Being passive, they do not interfere with each other, 
which facilitates their implementation. 

PIR sensors, whose sensing principle is based on the direct thermo
electric effect, are commonly used to detect movement in a room. 
Although the output is often binary, common devices incorporate dif
ferential detection analog signals (e.g., detection of changes or differ
ences in an ambient reading), which can be retrieved. In the home 
monitoring context, some approaches were based on this type of sensors 
to detect falls [12,13]. Others exploit life habits and more precisely 
changes in habits [14], to alert in case of an unusual absence of move
ment. To the best of our knowledge, the existing solutions, although 
interesting, do not measure the biomechanical aspects. 

The remainder of this paper is organized as follows: Section 2 pre
sents the desired parameters to be measured by our system. Section 3 
presents the output signals of the PIR sensors. Section 4 describes the 
process of the gait parameters measurement from the output signals, 
using a deep learning model. Section 5 presents the experimental results 
and discusses the latter with respect to the uncertainty of the measure
ments. Finally, section 6 concludes the paper and presents our 
perspectives. 
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2. Measured gait parameters 

In this study, we used a RealSense L515 depth camera in order to 
ensure a correct tracking of the skeleton model. The captured depth 
images were processed at an approximate rate of 30 frames per second. 
Gait speed Sgait is the variable of interest. It is calculated using the basic 
formula: 

Sgait =
ΔPcg

Δt
(1)  

where Pcg represents the center of gravity’s position of the human body, 
calculated by: 

Pcg =Avg
(
pshoulders, phip

)
(2)  

where pshoulders and phip represent the center of gravity of shoulders and 
hips, respectively. 

However, others parameters also seem to be interesting to assess 
such as the step length, stride length, and stride width. A step is defined 
by three phases. First, both legs are stable, with a null speed. Then, one 
of them starts moving with a speed Sstep and finally they both go back to 
stable. We consider that the walking speed is steady, so Sgait is equivalent 
to Sstep. From the Depth camera, a step is identified when Sgait is greater 
than 0.01 m/s. Step length is calculated using the formula: 

Lstep =
ΔPcg

Nsteps
; Sgait > 0.01 m

/

s (3) 

A stride is defined by the distance between two successive contacts 
on the floor with the same foot. Thus, stride length is the sum of two 
successive steps length. Lastly, stride width is defined by the projection 
of foot b onto a line defined by the foot’s stride a. This distance is 
calculated in (4): 

Wstride,a =
⃦
⃦pcg,b− pcg,bproj

⃦
⃦ (4) 

The idea behind our work is to measure these gait parameters using a 
non-intrusive, inexpensive and easily implemented device. In the 
following sections, we will demonstrate the possibility to achieve a 
satisfactory accuracy using a PIR sensor as biomechanical sensor. 

3. PIR-based system output signals 

The chosen PIR sensor is a Panasonic EKMC2605112, chosen for its 
ability to give an analog signal and its fair cost. Being used for accurate 
human body detection, it has a high sensitivity with the disadvantages of 
a low signal-to-noise ratio (SNR <25), a signal saturation in standard 
operating conditions and a rare occurrence of a sudden outbreak output. 
Nevertheless, the signals generated by such sensor can be representative 
of underlying parameters. 

When a human is walking near a PIR sensor, as shown in Fig. 1, the 

produced signal is in a form of a wave packet (see Fig. 2.) at a given time 
with a given amplitude, frequency and duration. The usual way to assess 
the gait speed is to measure the time difference between the wave 
packets acquired by 2 sensors (e.g., PIR0 and PIR2). But, at a given 
distance from the sensor, the wave packet frequency depends on the 
speed and can be used as an additional source. As the wave packet fre
quency also depends on the distance from the sensor, 2 more PIR sensors 
are added close to the first pair. The positioning is shown in Fig. 1. 

For a better understanding of the produced signals, a wavelet 
transform had been performed. The scalograms shown in Figs. 3 and 4 
represent the wavelet power levels for different scenarios: walking on 
east, center or west side, with a slow, normal or fast speed. We can 
clearly see the decrease in frequency due to distance, and somehow the 
one due to speed. As the gait parameters cannot be directly retrieved 
from the PIRs, a DL model is implemented for this aim. 

4. Proposed approach 

In this work, we propose a model for continuous gait measurement, 
based on two pairs of PIR sensors and a Depth camera (Fig. 1.). Our 
approach consists of implementing a DL regression model. It takes as 
input the signal from the two pairs of PIR sensors and computes the gait 
parameters. These latter are calculated by the Depth camera using for
mulas (1) - (4) and are fed to the DL model. In addition, the accurate gait 
parameters are obtained by using the camera as the ground truth of the 
experiment. It is also a temporary device used for the training phase 
only, thus the beneficiary’s privacy is preserved. Research work pre
sented in Refs. [15,16] motivated us for this approach. 

In a nutshell, the proposed model works as follows: The Depth 
camera will calculate the gait parameters as a person walks by. Simul
taneously, the output signals of PIR sensors are processed and three 
parameters are extracted from each. Then, a DL model takes the values 
of PIR sensors as input to predict the ones given by the camera. 

4.1. Experimental setup 

200 experiments on real sensor data were conducted for a duration of 
one and a half hour. The experiments were carried out in a corridor of 
dimensions 1.77 m × 5 m. We placed two pairs of PIR sensors facing 
each other, separated by a distance of 2 m and placed at the ankle height 
(Fig. 1.). The camera was positioned at the origin of the path to capture 
the whole body skeleton. The two types of sensors were synchronized 
with a start signal. For a heterogeneous dataset, the participants were 
asked to walk with a slow, normal and fast gait speed. In addition, three 

Fig. 1. PIR sensors and Depth camera implementation.  Fig. 2. Example of the output signals from a pair of PIR sensors.  
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different walking paths were adopted: east, center and west. The mea
surements were carried out on different days in order to counteract light 
bias and the clothing worn. 

4.2. Deep learning model 

The purpose of our approach is to create an autonomous gait mea
surement model for home monitoring. The idea is to measure gait pa
rameters based on the output signals of 4 PIR sensors. For this aim, we 
used a Multi-Layer Perceptron (MLP) regressor as a benchmark model. It 
takes as input a dataset of the different signal characteristics and as 
output the parameters calculated by the camera. The parameters used 
for our model are listed in Table 1. We would like to emphasize that 
before running our prediction model, we calculated the coefficient R2 as 
well as the p-value to ensure that our independent and dependent var
iables do not suffer from multicollinearity. 

5. Results and discussion 

We considered the gait speed Pcg, the step length Lstep and the stride 
width Wstride , calculated using the RealSense L515, as ground truth 
values. In order to identify how close the measured results are from the 
real ones, the Average bias and the Root Mean Square Error (RMSE) are 
computed in Table 2 using formulas (5) and (6), respectively. 

Average bias=
1
n
∑n

i=1
(x[i] − y[i]) (5)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(x[i] − y[i])2

√

(6)  

where n is the number of samples; x and y are two vectors representing 
the set of indication values given by the PIR sensors and the depth 
camera, respectively. 

The measured gait parameters are shown in Fig. 5. We notice that the 
values of gait speed and step length are accurately measured with a 
standard uncertainty relevant with a day-to-day monitoring of these 
indicators. Thus, the prediction model fits well these parameters. 
Nevertheless, it was less able to measure the stride width. 

With a series of continuous measurements, our system can easily 
adjust to fall within the bounds of measurement error [17]. The uncer
tainty can be explained by the presence of noise and spikes in the PIR 

Fig. 3. Wavelet power levels from different distances (west and east, respectively).  

Fig. 4. Wavelet power levels for different speeds.  

Table 1 
MLP parameters.  

Model parameters Values 

Hidden layers 3 
Neurons per layer 200 
Max_iter 5000 
Random_state 50 
Solver ‘adam’ 
Activation function ‘relu’ 
Initial learning rate 0.0005  

Table 2 
MLP model evaluation.  

Gait parameters Average bias Range RMSE 

Speed (m/s) − 0.002 [0.367; 1.994] 0.171 
Step length (m) − 0.024 [0.036; 0.848] 0.116 
Stride width (m) − 0.009 [0.025; 0.389] 0.075  
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signals. As discussed in Section 3, PIR sensors are extremely sensitive 
with a SNR less than 25. In such case, the model will assume that the 
erroneous signal corresponds to the speed given by the camera. More
over, we must underline the fact that the PIR sensors are trained by the 
Depth camera, which itself is a sensor that may be affected by envi
ronmental factors (e.g., light). In addition, the camera presents a depth 
accuracy between 5 mm and 14 mm through 9 m as specified by its 
manufacturer.1 Thus, the proposed experiment, despite its uncertainty, 
is deemed to be effective for gait speed and step length measurements. 

6. Conclusion and perspectives 

In this work, a simple yet effective gait measurement approach has 
been proposed. It is based on two pairs of PIR sensors along with a 
temporary Depth camera. Although PIR sensors are usually used for 
human presence detection, we demonstrated that they can be a used for 
gait measurement. They can also be a potent solution for both the 
acceptability issue of continuous monitoring devices, as well as their 
high costs. Once the sensor network detects a moving object, each PIR 
generates a signal of different amplitude, frequency and duration. These 
signal variations are fed to a MLP deep learning algorithm. The Depth 
camera extracts the corresponding gait speed, step length and stride 
width from each depth image and the prediction model is trained 
accordingly. Once the training phase is over, the Depth camera is 
removed and the measurement system will easily be forgotten by the 
concerned person. 

Future work consists of finding the optimal sensors height from the 
ground and disposition, for better precisions related to stride width. 
Also, we aim to implement an additional feature for identity recognition, 
in order to use such system in a multi-residential home. 
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Fig. 5. Results: a) gait speed b) stride length and c) stride width compared to 
the depth camera measurements. 
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