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Continuous gait measurement can bring relevant indicators for healthcare professionals. Several techniques were
developed for this cause. However, the beneficiaries, especially senior adults, find it hard to accept a monitoring
device as it takes away their privacy. In this paper, we present a non-intrusive, low-cost and easy to implement
model for gait measurement at home. It consists of implementing 4 passive infrared (PIR) sensors facing each
other by pair. Our approach is based on a Deep Learning (DL) model that takes as input the signals generated by

the PIR sensors, as they are representative of the distance and the speed of the moving object. A temporary Depth
camera is used for training the model on the gait parameters. To evaluate our approach, we conducted multiple
series of experiments on real sensor data. The results are promising and show that our approach is efficient for

continuous gait measurement.

1. Introduction

Gait impairment in elderly people is a major issue that widen the gap
between overall life expectancy and disability-free life expectancy.
Several studies [1-5] have suggested that continuous gait analysis pro-
vides a relevant predictor for the quality of life, cognitive disorders, fall
risk, among other “good health” indicators.

For such individuals, gait assessment is usually performed in clinical
settings characterized by intermittent observations, with the assistance
of a healthcare professional and under specific task-oriented conditions
[6]. This might introduce a bias because the observations are completely
uncorrelated with the familiar environment or because the subject is
often stressed out by the test or uses compensation strategies.

Thus, in-home measurement can provide meaningful information for
the practitioner to analyze the patient’s condition. But also, to be alerted
of a favorable evolution in order to evaluate the relevance of the treat-
ment (e.g., balance workshops), or unfavorable (e.g., the need of addi-
tional treatments). Current gold-standards systems for motion capture,
using cameras and infrared markers placed on bony landmarks [7] (e.g.,
Vicon, CODA motion) are often expensive, labor intensive and
time-consuming to setup. Besides, obstruction of the field of views or
lighting confounds issues are limiting factors that make such solutions
impracticable for clinical use. Markerless gait measurement [8,9] can be
done with RGB cameras and Depth sensors. Yet, these solutions are
found to be intrusive by the beneficiaries. Body-worn devices [10] (e.g.,
Inertial Measurement Units (IMU) based systems within smartwatches)
are often perceived as stigmatizing by the senior users or have low
acceptability ratings. There are also solutions implemented on or under
the floor [11]. But these, although promising and accurate, require the
renovation of the home and are quite expensive.

Within the context of aging at home, the setup must be 1) simple, not
requiring the intervention of a skilled person, 2) low-cost for a wide
deployment, 3) accurate enough so that the interpretation of the
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measurements is possible and sufficiently relevant, 4) non-intrusive and
non-stigmatizing. Points 2 and 3 are often in conflict. However, it can be
assumed that for an analyst, greater imprecision can be largely
compensated by continuous home measurement.

In view of the constraints listed above, we sought for a non-wearable
sensor, off the shelf and inexpensive, which can be placed anywhere in
the home. Systems based on passive infrared sensors (PIR) attracted
much attention due to their advantages of low power consumption, low
cost and privacy protection. Our approach aims to use such sensors to
evaluate the gait in an indoor environment. It is based on the signals
generated by these sensors since they provide significant information on
the detected object. Being passive, they do not interfere with each other,
which facilitates their implementation.

PIR sensors, whose sensing principle is based on the direct thermo-
electric effect, are commonly used to detect movement in a room.
Although the output is often binary, common devices incorporate dif-
ferential detection analog signals (e.g., detection of changes or differ-
ences in an ambient reading), which can be retrieved. In the home
monitoring context, some approaches were based on this type of sensors
to detect falls [12,13]. Others exploit life habits and more precisely
changes in habits [14], to alert in case of an unusual absence of move-
ment. To the best of our knowledge, the existing solutions, although
interesting, do not measure the biomechanical aspects.

The remainder of this paper is organized as follows: Section 2 pre-
sents the desired parameters to be measured by our system. Section 3
presents the output signals of the PIR sensors. Section 4 describes the
process of the gait parameters measurement from the output signals,
using a deep learning model. Section 5 presents the experimental results
and discusses the latter with respect to the uncertainty of the measure-
ments. Finally, section 6 concludes the paper and presents our
perspectives.
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2. Measured gait parameters

In this study, we used a RealSense L515 depth camera in order to
ensure a correct tracking of the skeleton model. The captured depth
images were processed at an approximate rate of 30 frames per second.
Gait speed Sgq;; is the variable of interest. It is calculated using the basic
formula:

AP,
At

Sgail = (1)
where P, represents the center of gravity’s position of the human body,
calculated by:

Pt'g :AVg (pxhoulders'7 phip) 2)

where pgnouiders and pryp represent the center of gravity of shoulders and
hips, respectively.

However, others parameters also seem to be interesting to assess
such as the step length, stride length, and stride width. A step is defined
by three phases. First, both legs are stable, with a null speed. Then, one
of them starts moving with a speed Sy, and finally they both go back to
stable. We consider that the walking speed is steady, so Sgq;; is equivalent
to Syp- From the Depth camera, a step is identified when Sg;; is greater
than 0.01 m/s. Step length is calculated using the formula:

& Seair > 0.01 m/s 3)
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A stride is defined by the distance between two successive contacts
on the floor with the same foot. Thus, stride length is the sum of two
successive steps length. Lastly, stride width is defined by the projection
of foot b onto a line defined by the foot’s stride a. This distance is
calculated in (4):

4
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The idea behind our work is to measure these gait parameters using a
non-intrusive, inexpensive and easily implemented device. In the
following sections, we will demonstrate the possibility to achieve a
satisfactory accuracy using a PIR sensor as biomechanical sensor.

3. PIR-based system output signals

The chosen PIR sensor is a Panasonic EKMC2605112, chosen for its
ability to give an analog signal and its fair cost. Being used for accurate
human body detection, it has a high sensitivity with the disadvantages of
a low signal-to-noise ratio (SNR <25), a signal saturation in standard
operating conditions and a rare occurrence of a sudden outbreak output.
Nevertheless, the signals generated by such sensor can be representative
of underlying parameters.

When a human is walking near a PIR sensor, as shown in Fig. 1, the
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Fig. 1. PIR sensors and Depth camera implementation.
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produced signal is in a form of a wave packet (see Fig. 2.) at a given time
with a given amplitude, frequency and duration. The usual way to assess
the gait speed is to measure the time difference between the wave
packets acquired by 2 sensors (e.g., PIRO and PIR2). But, at a given
distance from the sensor, the wave packet frequency depends on the
speed and can be used as an additional source. As the wave packet fre-
quency also depends on the distance from the sensor, 2 more PIR sensors
are added close to the first pair. The positioning is shown in Fig. 1.

For a better understanding of the produced signals, a wavelet
transform had been performed. The scalograms shown in Figs. 3 and 4
represent the wavelet power levels for different scenarios: walking on
east, center or west side, with a slow, normal or fast speed. We can
clearly see the decrease in frequency due to distance, and somehow the
one due to speed. As the gait parameters cannot be directly retrieved
from the PIRs, a DL model is implemented for this aim.

4. Proposed approach

In this work, we propose a model for continuous gait measurement,
based on two pairs of PIR sensors and a Depth camera (Fig. 1.). Our
approach consists of implementing a DL regression model. It takes as
input the signal from the two pairs of PIR sensors and computes the gait
parameters. These latter are calculated by the Depth camera using for-
mulas (1) - (4) and are fed to the DL model. In addition, the accurate gait
parameters are obtained by using the camera as the ground truth of the
experiment. It is also a temporary device used for the training phase
only, thus the beneficiary’s privacy is preserved. Research work pre-
sented in Refs. [15,16] motivated us for this approach.

In a nutshell, the proposed model works as follows: The Depth
camera will calculate the gait parameters as a person walks by. Simul-
taneously, the output signals of PIR sensors are processed and three
parameters are extracted from each. Then, a DL model takes the values
of PIR sensors as input to predict the ones given by the camera.

4.1. Experimental setup

200 experiments on real sensor data were conducted for a duration of
one and a half hour. The experiments were carried out in a corridor of
dimensions 1.77 m x 5 m. We placed two pairs of PIR sensors facing
each other, separated by a distance of 2 m and placed at the ankle height
(Fig. 1.). The camera was positioned at the origin of the path to capture
the whole body skeleton. The two types of sensors were synchronized
with a start signal. For a heterogeneous dataset, the participants were
asked to walk with a slow, normal and fast gait speed. In addition, three
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Fig. 2. Example of the output signals from a pair of PIR sensors.
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Fig. 3. Wavelet power levels from different distances (west and east, respectively).
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Fig. 4. Wavelet power levels for different speeds.

different walking paths were adopted: east, center and west. The mea-
surements were carried out on different days in order to counteract light
bias and the clothing worn.

4.2. Deep learning model

The purpose of our approach is to create an autonomous gait mea-
surement model for home monitoring. The idea is to measure gait pa-
rameters based on the output signals of 4 PIR sensors. For this aim, we
used a Multi-Layer Perceptron (MLP) regressor as a benchmark model. It
takes as input a dataset of the different signal characteristics and as
output the parameters calculated by the camera. The parameters used
for our model are listed in Table 1. We would like to emphasize that
before running our prediction model, we calculated the coefficient R? as
well as the p-value to ensure that our independent and dependent var-
iables do not suffer from multicollinearity.

5. Results and discussion

We considered the gait speed P, the step length Ly, and the stride
width Wy , calculated using the RealSense L515, as ground truth
values. In order to identify how close the measured results are from the
real ones, the Average bias and the Root Mean Square Error (RMSE) are
computed in Table 2 using formulas (5) and (6), respectively.

n

Average bias :% Z(x[l] —y[i]) 5)
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Table 1
MLP parameters.
Model parameters Values
Hidden layers 3
Neurons per layer 200
Max_iter 5000
Random_state 50
Solver ‘adam’
Activation function ‘relw’
Initial learning rate 0.0005
Table 2
MLP model evaluation.
Gait parameters Average bias Range RMSE
Speed (m/s) —0.002 [0.367; 1.994] 0.171
Step length (m) —0.024 [0.036; 0.848] 0.116
Stride width (m) —0.009 [0.025; 0.389] 0.075

where n is the number of samples; x and y are two vectors representing
the set of indication values given by the PIR sensors and the depth
camera, respectively.

The measured gait parameters are shown in Fig. 5. We notice that the
values of gait speed and step length are accurately measured with a
standard uncertainty relevant with a day-to-day monitoring of these
indicators. Thus, the prediction model fits well these parameters.
Nevertheless, it was less able to measure the stride width.

With a series of continuous measurements, our system can easily
adjust to fall within the bounds of measurement error [17]. The uncer-
tainty can be explained by the presence of noise and spikes in the PIR
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Fig. 5. Results: a) gait speed b) stride length and c) stride width compared to
the depth camera measurements.

signals. As discussed in Section 3, PIR sensors are extremely sensitive
with a SNR less than 25. In such case, the model will assume that the
erroneous signal corresponds to the speed given by the camera. More-
over, we must underline the fact that the PIR sensors are trained by the
Depth camera, which itself is a sensor that may be affected by envi-
ronmental factors (e.g., light). In addition, the camera presents a depth
accuracy between 5 mm and 14 mm through 9 m as specified by its
manufacturer.’ Thus, the proposed experiment, despite its uncertainty,
is deemed to be effective for gait speed and step length measurements.

6. Conclusion and perspectives

In this work, a simple yet effective gait measurement approach has
been proposed. It is based on two pairs of PIR sensors along with a
temporary Depth camera. Although PIR sensors are usually used for
human presence detection, we demonstrated that they can be a used for
gait measurement. They can also be a potent solution for both the
acceptability issue of continuous monitoring devices, as well as their
high costs. Once the sensor network detects a moving object, each PIR
generates a signal of different amplitude, frequency and duration. These
signal variations are fed to a MLP deep learning algorithm. The Depth
camera extracts the corresponding gait speed, step length and stride
width from each depth image and the prediction model is trained
accordingly. Once the training phase is over, the Depth camera is
removed and the measurement system will easily be forgotten by the
concerned person.

Future work consists of finding the optimal sensors height from the
ground and disposition, for better precisions related to stride width.
Also, we aim to implement an additional feature for identity recognition,
in order to use such system in a multi-residential home.

! https://www.intelrealsense.com/lidar-camera-1515.
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